DESIGN UNDER UNCERTAINTY

Prof. Miguel Bagajewicz

CHE 4273

Two-Stage Stochastic Optimization Models

- Philosophy
 - Maximize the *Expected Value* of the objective over all possible realizations of uncertain parameters.
 - Typically, the objective is *Profit* or *Net Present Value*.
 - Sometimes the minimization of *Cost* is considered as objective.

▶ Uncertainty

- Typically, the uncertain parameters are: market demands, availabilities, prices, process yields, rate of interest, inflation, etc.
- In Two-Stage Programming, uncertainty is modeled through a finite number of independent *Scenarios*.
- Scenarios are typically formed by *random samples* taken from the probability distributions of the uncertain parameters.

Characteristics of Two-Stage Stochastic Optimization Models

First-Stage Decisions

- Taken before the uncertainty is revealed. They usually correspond to structural decisions (not operational).
- Also called "Here and Now" decisions.
- Represented by "Design" Variables.
- Examples:
 - -To build a plant or not. How much capacity should be added, etc.
 - -To place an order now.
 - -To sign contracts or buy options.
 - -To pick a reactor volume, to pick a certain number of trays and size the condenser and the reboiler of a column, etc

Characteristics of Two-Stage Stochastic Optimization Models

- Second-Stage Decisions
 - Taken in order to adapt the plan or design to the uncertain parameters realization.
 - Also called "Recourse" decisions.
 - Represented by "Control" Variables.
 - Example: the operating level; the production slate of a plant.
 - Sometimes first stage decisions can be treated as second stage decisions. In such case the problem is called a multiple stage problem.

Consider the following forecasts:

Forecasted prices of raw materials product

Year	Ethylene	e Chlorine Oxyg		VCM
	\$/ton	\$/ton	\$/ft3	\$/ton
2004	492.55	212.21	0.00144	499.19
2005	499.39	214.14	0.00144	506.19
2006	506.22	216.07	0.00143	513.18
2007	513.06	218.00	0.00142	520.18
2008	519.90	219.93	0.00141	527.18
2009	526.73	221.86	0.00140	529.17
2010	533.57	223.79	0.00139	535.17
2011	540.41	225.72	0.00138	543.17
Std. Dev	24.17	10.56	0.00010	26.15

Forecasted excess demand over current capacity

Year	VCM		
	lb-mol/hr		
2004	3602		
2005	5521		
2006	7355		
2007	9551		
2008	11888		
2009	14322		
2010	16535		
2011	18972		

Consider building (in 2004) for three capacities to satisfy excess demand at 2004, 2006 and 2011. Plants will operate under capacity until 2006 or 2011 in the last two cases. These are 3 different first stage decisions.

The different investment costs are:

Plant Capacity 4090		6440	10500	
MMIb/yr		MMIb/yr	MMIb/yr	
ТСІ	\$47,110,219	\$68,886,317	\$77,154,892	

Consider the following calculation procedure

Consider each parameter's probability distribution.

Discretize it.

Option 1: pick values of probabilities. For example, for 3 values, pick 25%, 50% and 25% probability and find the values. Use the cumulative curve to locate the numbers.

Consider each parameter's probability distribution.

Discretize it.

Option 2: pick values (equidistantly or randomly) and find the probability that corresponds to them from the area they "span". Use the cumulative curve for this.

Consider each parameter's probability distribution.

Discretize it.

Option 3: pick <u>equal</u> probability values and find parameter values. For example, for 3 values, pick 33% and locate the points. Use the cumulative curve to do this.

FOR A LARGE NUMBER OF SAMPLES WE USE THIS OPTION

Each scenario is constructed by picking one realization for each parameter.

EXAMPLE:

2 parameters ($\theta_{1,}$, θ_{2}). If each parameter is discretized in three instances ($\theta_{i,low}$, 25%, $\theta_{i,avg}$, 50%, $\theta_{i,hig}$, 25%)

Scenario Prob $\theta_{1,low}, \theta_{2,low}$ $\theta_{1,low}, \theta_{2,avg}$ $\theta_{1,low}, \theta_{2,hig}$ $\theta_{1,avg}, \theta_{2,low}$ $\theta_{1,avg}, \theta_{2,avg}$ $\theta_{1,avg,}$ $\theta_{2,hig}$

bability	Scenario	Probability
6.25%	$ heta_{1,hig,} heta_{2,low}$	v 6.25%
12.5%	$ heta_{1,hig,} heta_{2,av}$	g 12.5%
6.25%	$ heta_{1,hig,} heta_{2,hig}$	6.25%
12.5%		
25.0%	SUM	OF ALL
12.5%	PROBA	BILITIES=1

Effect of Small Number of Samples

Effect of the Number of Samples on Results (Gas in Asia)

REGRET ANALYIS

MINIMAX REGRET ANALYSIS

Motivating Example

➢ Traditional way Maximize Average...select A

≻Optimistic decision maker MaxiMax ... select C

Pessimistic decision maker MaxiMmin ... select D

	s ₁ High	s ₂ Medium	s ₃ Low	Average
A	19	14	-3	10
B	16	7	4	9
С	<mark>20</mark>	8	-4	8
D	10	6	<mark>5</mark>	7
Max	20(C)	14(A)	5(D)	10(A)

MINIMAX REGRET ANALYSIS

Motivating Example

- Calculate regret: find maximum regret
- >A ... regret = 8 @ low market
- \succ C ... regret = 9 @ low market
- >D ... regret = 10 @ high market
- **>**B ... regret = 7 @ medium market

$\succ MINIMAX \rightarrow B$

➢In general, gives *conservative* decision *but not pessimistic*.

	s_1	S ₂	\$3	Maximum
	High	Medium	Low	Regret
A	1	0	8	8
B	4	7	1	7
С	0	6	<mark>9</mark>	9
D	<mark>10</mark>	8	0	10

MINIMAX REGRET ANALYSIS

Two-Stage Stochastic Programming Using Regret Theory

	NPV							
	s1	s2	s3	s4	s5	ENPV	Max	Min
d1	19.01	10.38	10.57	15.48	10.66	13.22	19.01	10.38
d2	11.15	14.47	8.87	20.54	10.58	13.12	20.54	8.87
d3	12.75	7.81	16.02	22.25	9.16	13.60	22.25	7.81
d4	5.41	9.91	12.63	32.02	8.08	13.61	32.02	5.41
d5	15.09	7.40	8.81	12.48	15.05	11.77	15.09	7.40
Max	19.01	14.47	16.02	32.02	15.05	13.61	32.02	10.38

Regret							
	s1	s1 s2 s3 s4 s5 Max					
d1	0.00	4.09	5.45	16.54	4.39	16.54	
d2	7.86	0.00	7.15	11.48	4.47	11.48	
d3	6.26	6.66	0.00	9.77	5.89	9.77	
d4	13.60	4.56	3.39	0.00	6.97	13.60	
d5	3.92	7.07	7.21	19.54	0.00	19.54	
Min					9.77		

SAMPLING ALGORITHM

This generates several solutions

UPPER AND LOWER BOUNDS

This is very useful because it allows nice decomposition, That is, there is no need to solve the full stochastic problem

UPSIDE POTENTIAL

Point measure for the upside

Comparison measure

CONCLUSIONS

- Regret Analysis can help in identifying good solutions (It can also fail)
- The sampling Algorithm is an important tool to identify upper bounds and good solutions.
- The upper potential is important to be considered.